

Reliability Metrics and Reliability Value-Based Planning

Joseph H. Eto

Lawrence Berkeley National Laboratory

Distribution Systems and Planning Training for New England Conference of Public Utility Commissioners, Sept. 27-29, 2017

Overview of this presentation

- ► Reliability Metrics
- Major Events
- ► Reliability Value-Based Planning
- ► The Interruption Cost Estimate (ICE) Calculator
- Considerations for Reliability Planning Emerging from Recent LBNL Research
- Bibliography

Electricity reliability is measured by the average total time and frequency that the lights are out

System Average Interruption Duration Index

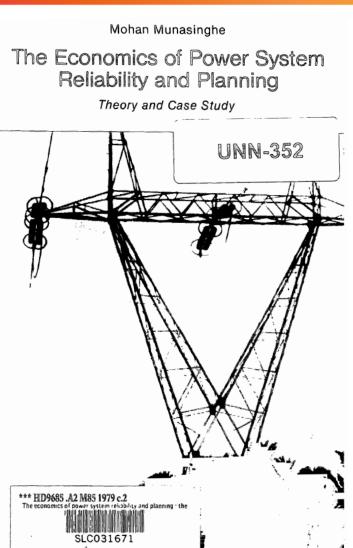
System Average Interruption Frequency Index

Customer Average Interruption Duration Index

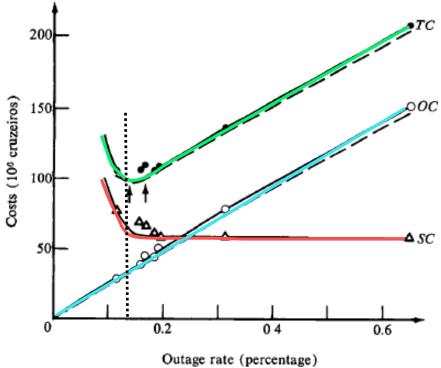
IEEE Standard 1366	Investor Owned	Cooperative	Municipal	
Number of utilities reporting	137	296	117	
% of U.S. sales by type of utility	51%	47%	43%	
SAIDI with Major Events	237	302	115	
SAIDI without Major Events	136	159	50	
SAIFI with Major Events	1.4	2.8	0.9	
SAIFI without Major Events	1.2	2.1	0.7	

IEEE Standard 1366

- ► First developed in 1998 to define reliability indices; amended in 2003 to add a consistent approach for segmenting Major Event Days (amended again in 2012; MED definition unchanged)
- Uses 2.5*beta to estimate a threshold daily SAIDI, Tmed, above which a Major Event Day is identified
 - Tmed = exp $(\alpha+2.5\beta)$
 - Beta = log-normal standard deviation
 - Alpha = log-normal statistical mean
- For a normal distribution:
 - Multiplying beta (the standard deviation) by 2.5 covers 99.379% of the expected observations (assuming a one-sided confidence interval)
 - For a year of daily observations, this translates to an expectation of 2.3 Major Event Days per year


Introducing Reliability Value-Based Planning

- ► The pace of electricity grid modernization efforts will be determined by decisions made by electric utilities, their customers, and local communities/states to adopt new technologies and practices
- ► An important motivation for these actions will be maintaining or improving the reliability and resiliency of electric service
- ► From an economic perspective, the justification for these actions will therefore, depend, at least in part, on:
 - ☐ The cost of the actions under consideration;
 - ☐ The impact they are expected to have on reliability or resilience; and
 - ☐ The value these impacts have to the utility, its customers, and the community/state
- ► Better information will enable, but does not guarantee, better decisions—and remember... we will never have perfect information

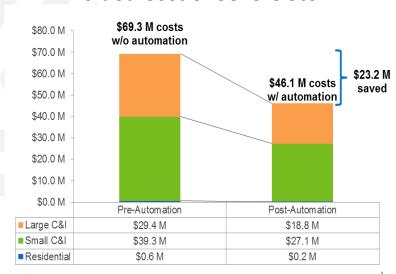

Value-Based Reliability Planning is a means for taking the cost of interruptions borne by customers into utility planning decisions

A World Bank Research Publication

Figure 13.1. Optimization of the Outage System: Costs Versus Outage Rate

Note: SC = distribution system supply costs; QC = global outage costs; and TC = total costs. The plotted data points and solid lines refer to efficiency priced costs; the broken lines indicate the costs in terms of social prices.

Value-Based Reliability Planning example: Distribution Automation



- Utility: EPB of Chattanooga
- Customers Impacted: 174,000 customers (entire territory)
- Investment: 1,200 automated circuit switches and sensors on 171 circuits
- ► Reliability Improvement:
 - □ SAIDI **4**45% (from 112 to 61.8 minutes/year)
 - □ SAIFI **\$\sqrtar\$**51% (from 1.42 to 0.69 interruptions/ year) (between 2010 and 2015)

Annual Costs and Benefits

Avoided Cost of Severe Storm

ICE Calculator: http://icecalculator.com

ICECalculator.com

Interruption Cost Estimate Calculator

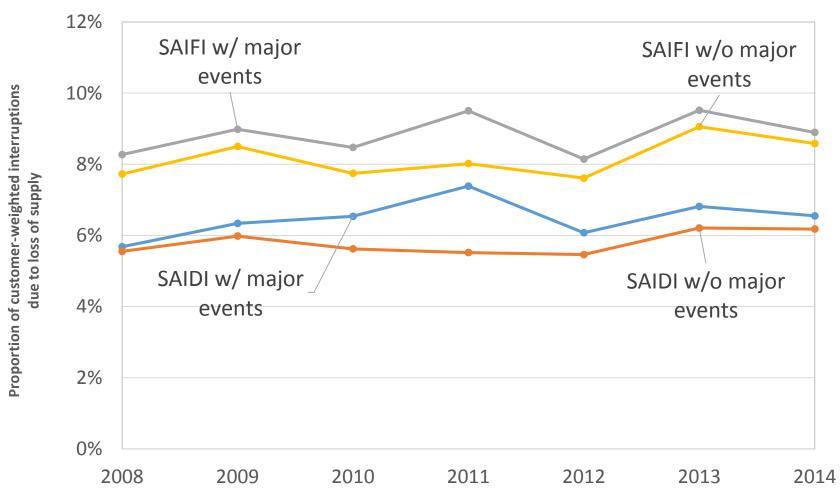
The Interruption Cost Estimate (ICE) Calculator is a tool designed for electric reliability planners at utilities, government organizations or other entities that are interested in estimating interruption costs and/or the benefits associated with reliability improvements.

Home

About the Calculator
Disclaimer
Relevant Reports
Contact Us

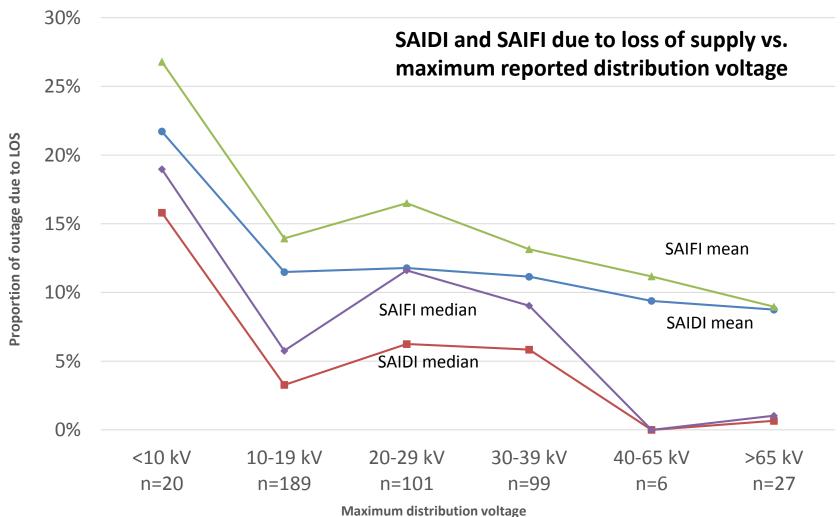
Use the ICE Calculator to:

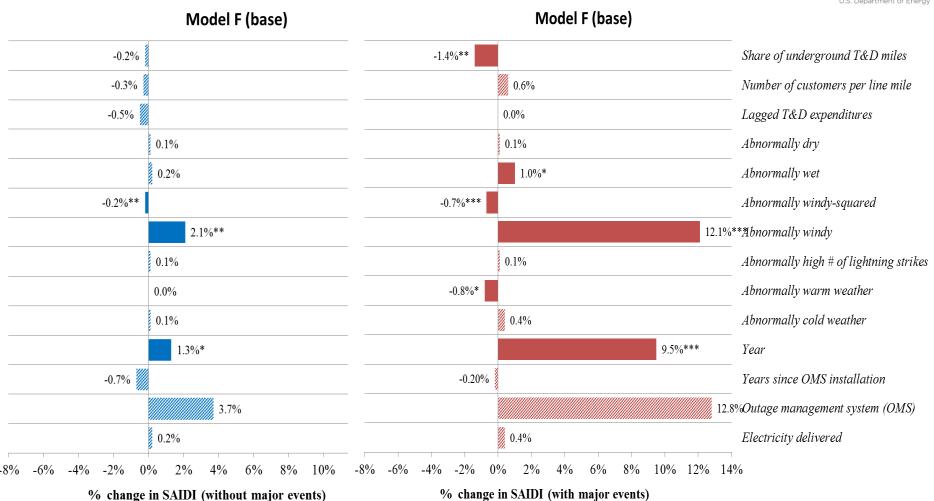
- Estimate Interruption Costs
 Estimate the cost per interruption event, per average kW, per unserved kWh and the total cost of sustained electric power interruptions.
- Estimate Value of Reliability Improvement in a Static Environment
 Estimate the value associated with a given reliability improvement. The environment is "static" because the expected reliability with and without the improvement does not change over time.
- Estimate Value of Reliability Improvement in a Dynamic Environment
 Estimate the value associated with a given reliability improvement. The environment is "dynamic"
 because the expected reliability with and without the improvement changes over time based on
 forecasts of SAIFI, SAIDI and CAIDI.


This tool was funded by the Lawrence Berkeley National Laboratory and Department of Energy. Developed by Freeman, Sullivan & Co.

Learn more about the federal initiatives that support the development of the technologies, policies and projects transforming the electric power industry on SmartGrid.gov.

Copyright 2011

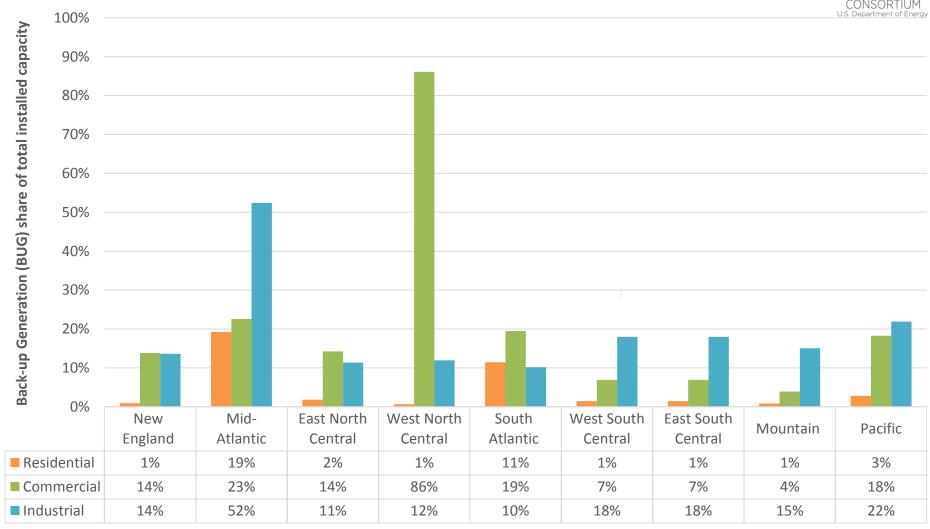

Customer-weighted proportion of SAIDI and SAIFI due to loss of supply (2008-2014, n = 73)


Still, we are moving in the right direction... yet, there remains much work to be done

LBNL finds that reliability is getting worse due to increased severity/frequency of major events

Source: Larsen, P. K LaCommare, J. Eto, J. Sweeney. Recent Trends in Power System Reliability and Implications for Evaluating Future Investments in Resiliency. Energy 117 (2016) 29-46. http://dx.doi.org/10.1016/j.energy.2016.10.063

The Costs of Power Interruptions



Varies by type of customer and depends on when and for how long their lights are out

	Interruption Duration					
Interruption Cost	Momentary	30 minutes	1 hour	4 hours	8 hours	
Medium and Large C&I						
Morning	\$8,133	\$11,035	\$14,488	\$43,954	\$70,190	
Afternoon	\$11,756	\$15,709	\$20,360	\$59,188	\$93,890	
Evening	\$9,276	\$12,844	\$17,162	\$55,278	\$89,145	
Small C&I						
Morning	\$346	\$492	\$673	\$2,389	\$4,348	
Afternoon	\$439	\$610	\$818	\$2,696	\$4,768	
Evening	\$199	\$299	\$431	\$1,881	\$3,734	
Residential			¥			
Morning	\$3.7	\$4.4	\$5.2	\$9.9	\$13.6	
Afternoon	\$2.7	\$3.3	\$3.9	\$7.8	\$10.7	
Evening	\$2.4	\$3.0	\$3.7	\$8.4	\$11.9	

Installed Capacity of Back-up Generation

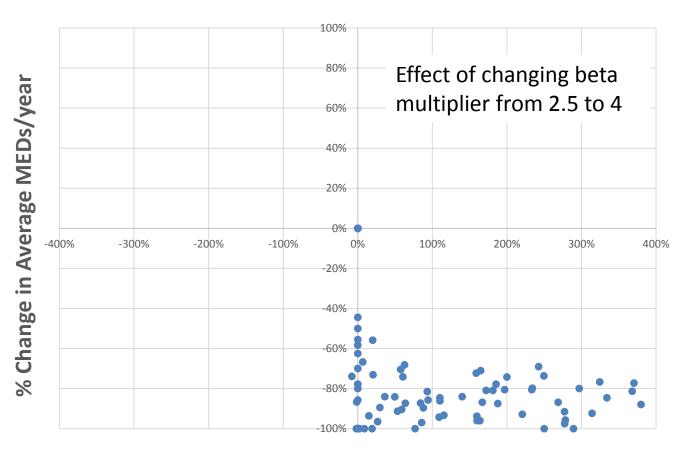
Source: Frost and Sullivan. 2015. "Analysis of the US Power Quality Equipment Market." Berkeley California: Lawrence Berkeley National Laboratory. LBNL-1003990. August. Accessible at: http://eetd.lbl.gov/sites/all/files/lbnl-1003990.pdf

Some themes to keep in mind

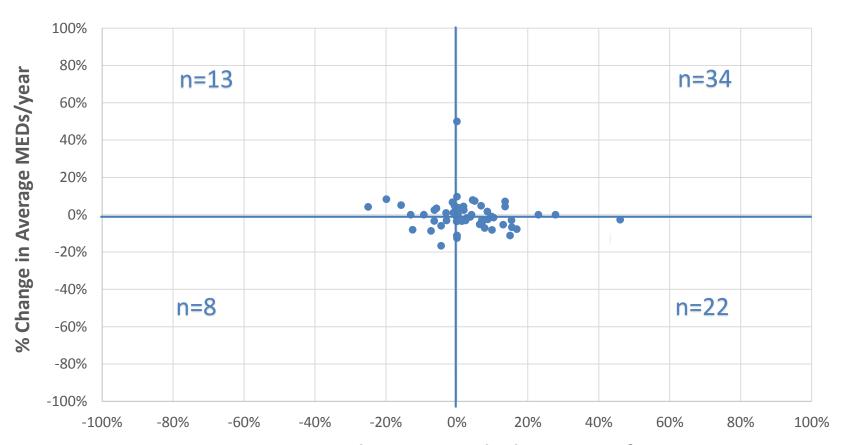
- "What's measured improves"
- Peter F. Drucker
- "Delegating your accountabilities is abdication"
- Michael E. Gerber
- "Not everything that can be counted counts, and not everything that counts can be counted"
- Albert Einstein

Bibliography

- ► <u>LaCommare, Kristina Hamachi, Peter H. Larsen, and Joseph H. Eto.</u> <u>Evaluating Proposed Investments in Power System Reliability and Resilience: Preliminary Results from Interviews with Public Utility Commission Staff.</u>, 2017.https://emp.lbl.gov/sites/default/files/lbnl-_1006971.pdf
- Larsen, Peter H.. "A Method to Estimate the Costs and Benefits of Undergrounding Electricity Transmission and Distribution lines." Energy Economics 60, no. November 2016 (2016): 47-61. https://emp.lbl.gov/sites/default/files/lbnl-1006394 prepublication.pdf
- Larsen, Peter H., Kristina Hamachi LaCommare, Joseph H. Eto, and James L. Sweeney. Assessing Changes in the Reliability of the U.S. Electric Power System., 2015. https://emp.lbl.gov/sites/default/files/lbnl-188741.pdf
- ► <u>Eto, Joseph H., Kristina Hamachi LaCommare, Michael D. Sohn, and Heidemarie C. Caswell</u>. "<u>Evaluating the Performance of the IEEE Standard 1366 Method for Identifying Major Event Days View Document</u>." *IEEE Transactions on Power Systems* 32, no. 2 (2016).
- ▶ <u>Sullivan, Michael J., Josh A. Schellenberg</u>, and <u>Marshall Blundell</u>. <u>Updated Value of Service Reliability Estimates for Electric Utility Customers in the United States.</u>, 2015. https://emp.lbl.gov/sites/default/files/lbnl-6941e.pdf
- https://emp.lbl.gov/research/electricity-reliability

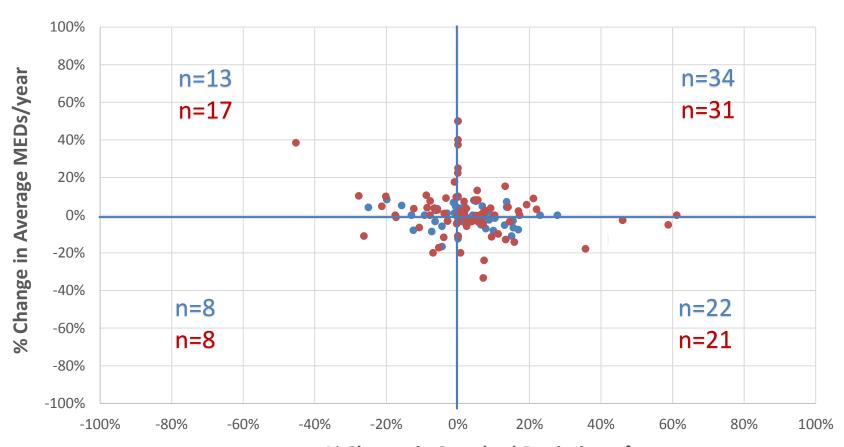

Supporting Slides

Evaluating the performance of alternatives to the Standard 1366 method



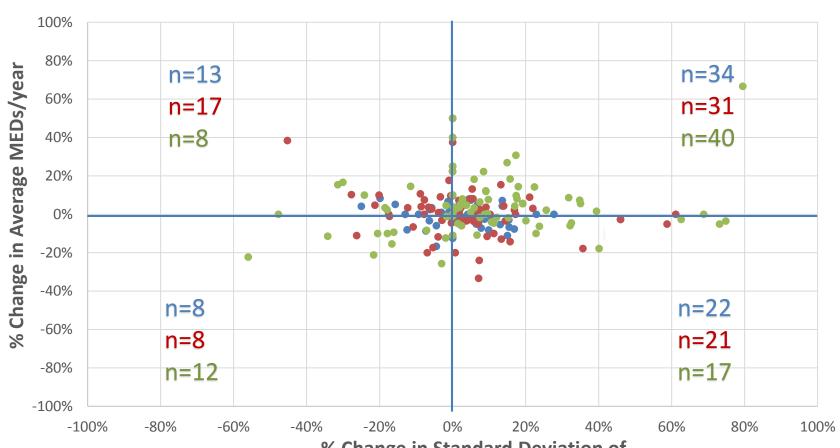
% Change in Standard Deviation of SAIDI w/o Major Events

The effect of using fewer historical years to calculate Tmed: 4 years



% Change in Standard Deviation of SAIDI w/o Major Events

The effect of using fewer historical years to calculate Tmed: 4 years; 3 years



% Change in Standard Deviation of SAIDI w/o Major Events

The effect of using fewer historical years to calculate Tmed: 4 years; 3 years; 2 years

% Change in Standard Deviation of SAIDI w/o Major Events